MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

NATIONAL TECHNICAL UNIVERSITY «KHARKIV POLYTECHNIC INSTITUTE»

Department	Power stations
Specialty	$141 «$ Electric Power Engineering, Electrical Engineering and Electromechanics»
Educational program	Electric Power Engineering (141.01- «Electric Power Stations»)
Form of education	Full-time
Academic discipline	Mathematical Tasks of Power Engineering
Semester	5

LIST OF QUESTIONS AND TASKS INCLUDED IN THE EXAMINATION TICKETS FOR THE DISCIPLINE

Number of tickets \qquad

Approved at the meeting of the department Protocol № from 20

Head of Department
\qquad Oleksandr LAZURENKO
Examiner \quad Liudmyla LYSENKO

- System parameters, initial operation parameters, and electric parameters to specify in problems of power system steady-state analysis.
- Presentation of a power system with an equivalent diagram.
- Application of graph theory in power system steady-state analysis.
- Presentation of an electric equivalent diagram as a graph. Path, tree, chords of graph. The general topological property of a connected directed graph.
- First and second incidence matrices and their composition for electric grids of any configuration.
- Vertex-edge incidence matrix and cycle matrix of a graph. Their composition for power system configurations of any complexity.
- Complete and incomplete vertex-edge matrix and its composition for power system configurations of any complexity.
- Cycle matrix of a graph and its composition for power system configurations of any complexity.
- Analytical presentation of power system configuration of any complexity.
- The basic contours and their properties.
- Selection of the basic contours for a power grid configuration of any complexity.
- Analytical dependence of the first and the second incidence matrices.
- Composition of the generalized matrix state equation for a power grid of any complexity.
- Algorithm of calculating DC power system steady-state operation parameters with the generalized matrix state equation.
- Composition of a matrix nodal equation for a DC electric grid of any complexity.
- Composition of a matrix nodal equation for an AC electric grid of any complexity.
- Configuration and properties of nodal admittance matrix $\mathbf{Y}_{\text {bus }}$ for a DC power system of any configuration.
- Algorithm of calculating DC power system steady-state operation parameters with matrix nodal equation.
- Composition of matrix loop equation for a DC electric grid of any complexity.
- Configuration and properties of contour impedance matrix $\boldsymbol{Z}_{\mathbf{C}}$ for a DC power grid of any configuration.
- Algorithm of calculating DC power system steady-state operation parameters matrix loop equation.
- Calculation of DC power system steady-state operation parameters with application of Matlab Simulink.
- Formation of a current flow matrix \mathbf{C} for homogeneous power grids of any configuration.
- Composition of a system of linear nodal equations for an AC electric grid of any complexity.
- Composition of a system of linear current imbalance equations for an AC electric grid of any complexity.
- Configuration and properties of nodal admittance matrix $\mathbf{Y}_{\text {bus }}$ for an AC power grid of any configuration.
- Formation of a power flow matrix \mathbf{C} for homogeneous power grids of any configuration.
- Algorithm of calculating AC power system steady-state operation parameters of linear matrix nodal equation.
- Composition of a system of nonlinear nodal equations for an AC electric grid of any complexity.
- Composition of a system of nonlinear current imbalance equations for an AC electric grid of any complexity.
- Algorithm of calculating AC power system steady-state operation parameters with nonlinear nodal equations.
- Methods of solving a system of linear equations.
- Accurate methods of solving a system of linear equations.
- Approximate methods of solving a system of linear equations.
- Methods of solving a system of nonlinear equations.
- Gaussian elimination method and its application to solving a system of linear algebraic equations.
- Iteration technique of solving a system of linear equations.
- Seidel technique of solving a system of linear equations.
- Application of MicroSoft Excel Solver to solving a system of linear equations.
- Application of Matlab Simulink to solving a system of linear equations.
- Newton's method and its application to solving a system of nonlinear nodal equations.
- Composition of Jacobi matrix for a system of nonlinear nodal equations.
- Task: Restore the equivalent diagram of an electric grid via matrix \mathbf{M}, choose a system of basic contours, compose a system of contour equations (with zero e.m.f.) and solve it with inverse matrix method. Calculate the branch currents and the nodal voltages for the given parameters of the equivalent diagram.

$$
\mathbf{M}=\left|\begin{array}{rrrrrrr}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 & -1 & 0 \\
0 & 0 & -1 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right|
$$

- Task: Restore the equivalent diagram of an electric grid via matrix \mathbf{M}, compose a system of nonlinear nodal equations and solve it with Newton's method. Calculate the nodal voltages and the branch currents for the given parameters of the equivalent diagram.

$$
\mathbf{M}=\left|\begin{array}{rrr}
1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right|
$$

- Task: Restore the equivalent diagram of an electric grid via matrix \mathbf{M}, compose a system of nonlinear nodal equations and solve it with any method. Calculate the nodal voltages and the branch currents for the given parameters of the equivalent diagram.

$$
\mathbf{M}=\left|\begin{array}{rrrrr}
0 & 0 & 1 & -1 & -1 \\
0 & -1 & -1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1
\end{array}\right|
$$

- Task: Restore the equivalent diagram of a DC electric grid via matrix M, build a Matlab Simulink model and find the branch currents and the nodal voltages for the given parameters of the DC electric grid.

$$
\mathbf{M} \xlongequal{ }\left|\begin{array}{rrrrrrr}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 & -1 & 0 \\
0 & 0 & -1 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right|
$$

- Task: Restore the equivalent diagram of an electric grid via matrix \mathbf{M}, find a system of basic contours, compose a system of state equations (with zero e.m.f.) and solve it with Gauss method. Calculate the branch currents and the nodal voltages for the given parameters of the equivalent diagram.

$$
\mathbf{M}=\left|\begin{array}{cccccc}
0 & -1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & -1 & -1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0
\end{array}\right|
$$

- Task: Restore the equivalent diagram of an electric grid via matrix \mathbf{M}, compose a system of linear nodal equations and solve it with Gauss method. Calculate the nodal voltages and the branch currents for the given parameters of the equivalent diagram.

$$
\mathbf{M}=\left|\begin{array}{rrrrr}
0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & -1 & 0 \\
-1 & -1 & 0 & 0 & -1
\end{array}\right|
$$

- Task: Restore the equivalent diagram of a DC electric grid via matrix M, compose a system of nodal equations and solve it with application of Matlab Simulink for the given parameters of the DC electric grid.

$$
\mathbf{M}=\left|\begin{array}{rrrrrrrr}
-1 & 0 & -1 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & -1 & -1
\end{array}\right|
$$

- Task: Restore the equivalent diagram of an electric grid via matrix \mathbf{M}, compose a system of nonlinear nodal equations and solve it with any method. Calculate the nodal voltages and the branch currents for the given parameters of the equivalent diagram.

$$
\mathbf{M}=\left|\begin{array}{rrrrr}
-1 & -1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & -1 & -1 & 0
\end{array}\right|
$$

- Task: Restore the equivalent diagram of an electric grid via matrix \mathbf{M}, compose a system of linear nodal equations and solve it with Gauss method. Calculate the nodal voltages and the branch currents for the given parameters of the equivalent diagram.

$$
\mathbf{M} \xlongequal{ }\left|\begin{array}{cccccccc}
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & -1 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right|
$$

- Task: Restore the equivalent diagram of an electric grid via matrix \mathbf{M}, choose a system of basic contours, compose a system of state equations and solve it with any method. Calculate the branch currents and the nodal voltages for the given parameters of the equivalent diagram.

$$
\mathbf{M}=\left|\begin{array}{rrrrrrrr}
-1 & 0 & -1 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & -1 & -1
\end{array}\right|
$$

- Task: Restore the equivalent diagram of an AC electric grid via matrix \mathbf{M}, compose a system of nodal equations and solve it with application of Matlab Simulink for the given parameters of the DC electric grid.

$$
\mathbf{M}=\left|\begin{array}{rrrrrrrr}
-1 & 0 & -1 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & -1 & -1
\end{array}\right|
$$

- Task: Restore the equivalent diagram of an AC electric grid via matrix \mathbf{M}, compose a system of nonlinear nodal equations and solve it with inverse matrix method. Calculate the nodal voltages and the branch currents for the given parameters of the equivalent diagram.

$$
\mathbf{M}=\left|\begin{array}{rrrrrr}
1 & 0 & 1 & 0 & 0 & 1 \\
-1 & -1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & -1
\end{array}\right|
$$

- Task: Restore the equivalent diagram of an AC electric grid via matrix \mathbf{M}, compose a system of linear nodal equations and solve it with Gauss method. Calculate the nodal voltages and the branch currents for the given parameters of the equivalent diagram.

$$
\mathbf{M}=\left|\begin{array}{rrrrrrrr}
0 & 0 & 0 & -1 & 0 & 0 & -1 & -1 \\
0 & -1 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
-1 & 0 & -1 & 1 & 1 & 0 & 0 & 0
\end{array}\right|
$$

- Task: Restore the equivalent diagram of an AC electric grid via matrix \mathbf{M}, compose a system of nonlinear nodal equations and solve it with Newton's method. Calculate the nodal voltages and the branch currents for the given parameters of the equivalent diagram.

$$
\mathbf{M}=\left|\begin{array}{rrr}
0 & -1 & 1 \\
-1 & 0 & -1
\end{array}\right|
$$

- Task: Restore the equivalent diagram of a DC electric grid via matrix M, build a Matlab Simulink model and find the branch currents and the nodal voltages for the given parameters of the DC electric grid.

$$
\mathbf{M}=\left|\begin{array}{rrrrrr}
-1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right|
$$

- Task: Restore the equivalent diagram of a DC electric grid via matrix \mathbf{M}, find a system of basic contours, compose a system of contour equations (with zero e.m.f.) and solve it with inverse matrix method. Calculate the branch currents and the nodal voltages for the given parameters of the equivalent diagram.

$$
\mathbf{M} \xlongequal{ }\left|\begin{array}{cccccc}
0 & -1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & -1 & -1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0
\end{array}\right|
$$

- Task: Restore the equivalent diagram of an AC electric grid via matrix \mathbf{M}, compose a system of nodal equations and solve it with application of Matlab Simulink for the given parameters of the DC electric grid.

$$
\mathbf{M}=\left|\begin{array}{rrrrr}
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & -1 & -1 \\
0 & -1 & -1 & 0 & 0
\end{array}\right|
$$

- Task: Restore the equivalent diagram of an AC electric grid via matrix \mathbf{M}, compose a system of nonlinear nodal equations and solve it with inverse matrix method. Calculate the nodal voltages and the branch currents for the given parameters of the equivalent diagram.

$$
\mathbf{M}=\left|\begin{array}{rrrrr}
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & -1 & -1 \\
0 & -1 & -1 & 0 & 0
\end{array}\right|
$$

- Task: Restore the equivalent diagram of a DC electric grid via matrix M, build a Matlab Simulink model and find the branch currents and the nodal voltages for the given parameters of the DC electric grid.

$$
\mathbf{M} \xlongequal{ }\left|\begin{array}{cccccc}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & -1 & 0 & -1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0-1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1
\end{array}\right|
$$

