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Laboratory work 3 

Simulation of a separately excited dc motor operation in different modes and study 

of its characteristics 

3.1. Objective 

Mathematical description and simulation of a separately excited dc motor opera-

tion under various conditions, analysis of its stability with different criteria, assessment 

of its time domain specifications and steady-state errors. 

 

3.2 Initial data: 

Rated capacity Prat, kW 

Rounds per minute nr, rpm 

Load current Iload, A 

Resistance of the armature winding and its addi-

tional poles AR = ra + rap, Ω 

Number of the armature parallel circuits 2p 

Magnetic flux of the pole Ф, mWb 

Inertia of the armature J, kgm
2
. Figure 3.1 – Excitation of a sepa-

rately excited dc motor 

3.3 Mathematical description and transfer function of a separately excited dc 

motor 

The system of differential equations describing electrical and mechanical balance 

of the motor is the following: 

 
































)5(

)4(

)3(

)2(

)1(

R

A

M

M
A

AAAA

EX
EXEXEXEX

MM
dt

d
J

IКМ

КЕ

Е
dt

dI
LRIU

dt

dI
LRIU

 (3.1) 

where UEX is the motor excitation winding voltage, V; 
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IEX is the motor excitation winding current, A; 

REX is the motor excitation winding resistance, Ω; 

LEX is the motor excitation winding inductance, H; 

UA is the motor voltage, V; 

IA is the motor armature current, A; 

LA is the motor armature winding inductance, H; 

AR  is Resistance of the armature winding and its additional poles, Ω; 

EM is the motor emf, sV  ; 

K is a design coefficient; 

  is the motor rotational speed, rpm; 

Ф is magnetic flux, Wb; 

М is the motor torque, mN  ; 

MR is resistant torque, mN  ; 

IS is static load current, A 

J is inertia of the armature, kgm
2
. 

The following simplifications are made to build a mathematical model of a sepa-

rately excited dc motor: 

1. The system is absolutely rigid, that is the motor has one degree of freedom; 

2. The rotational elements are of identical mass; 

3. The static torque on the shaft is constant; 

4. The armature reaction is compensated; 

5. The motor shaft rotational speed versus the armature voltage UA is linear; 

6. Magnetic flux Ф is constant. 

 

Substituting equation  3  to equation  2  in system (3.1), we obtain: 

   k
dt

dI
LRIU A

AAAA . (3.2) 

Substituting  4  to  5 , we obtain the following expression 
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which allows obtaining the motor armature current IA 
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and its derivative 
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to substitute them to (3.2): 
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Let us introduce the following notation: 

– electromechanical time constant 
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– electromagnetic time constant of the armature circuit 
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– transfer factor over the motor armature voltage  
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– transfer factor over the motor static torque (disturbance) 
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Substituting (3.7) – (3.10) to equation of the motor static equilibrium (3.6), we 

obtain a differential equation of the motor relating the controlled parameter   to the 

task UA and disturbance МR actions: 
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In Laplace transforms: 
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or 

 )()()()1( RSAMM
2
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The transfer functions of the separately excited DC motor for the task and the dis-

turbance signals, respectively, are: 
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3.4 Block diagram of a separately excited dc motor 

An algorithmic block diagram represents differential equations written in Laplace 

transforms. System of differential equations (3.1) in Laplace transforms is: 
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From the first equation of system (3.15), we obtain the transfer function for the 

electric circuit of the motor: 
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From the other equation of system (3.15), we obtain the transfer function for the 

mechanical circuit of the motor: 
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 (3.17) 

The algorithmic block diagram of a separately excited dc motor is: 

 



 5 

 
Figure 3.2 – The algorithmic block diagram of a separately excited dc motor 

 

A Simulink model for simulating the motor output behavior under various opera-

tion conditions is the following: 

 

Figure 3.3 – A Simulink model for studying the motor operation 

 

3.5 Calculation of the motor parameters 

The rotational speed is related to R.p.m the following way: 

 
30

r
load

n
 [rad/s]. (3.18) 

In no-load operation mode, the rotational speed is determined with expression 
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Value of KФ is calculated as: 
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where Uload = UA,  Iload = IA. 

The rotational speed of the motor under load is decreased by 

 
КФ

RI 
 A , [rad/s]. (3.21) 

Inductance of the armature circuit LA is calculated with formula: 
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where  is a coefficient for compensated motors chosen from the range of 23; 

Iload = IA,  

Electromagnetic time constant of the armature circuit:  
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Transfer factor over the motor armature voltage: 
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Transfer factor over the motor static torque: 
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To determine the type of transient, damping factor ξ is calculated: 
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3.6 Assignment 

In accordance with the variant given in table 3.1: 

1 – Calculate parameters of a separately excited dc motor. 

2 – Build a Simulink model and study the motor operation in the idle mode, 

IS = 0, and under load, IS = Iload. Plot the corresponding graphs. 

Study 

2.1 – transients of the motor rotational speed and the armature current under no 

load according to the procedure:  

switching-on of the motor  steady-state operation  switching-off of the mo-

tor; 

2.2 – transients of the motor rotational speed and the armature current under load 

applied to the motor at zero time, t=t0, simultaneously with the motor starting according 

to the procedure:  

switching-on of the motor and switching-on of the load  steady-state operation 

 switching-off of the load and switching-off of the motor ; 

2.3 – transients of the motor rotational speed and the armature current under load 

applied and disconnected when the motor operates in the steady-state mode according to 

the procedure:  

switching-on of the motor  steady-state operation  : switching-on of the load 

 steady-state operation  switching-off of the load  steady-state operation  

switching-off of the motor. 

3 – Build the block diagram of the motor and obtain the complete differential 

equation describing the motor behavior in the transient mode and static equation de-

scribing the motor behavior in the steady-state mode.  

Calculate the steady-state value of the controlled parameter in no-load mode and 

under load. 

Plot a family of static characteristic for several disturbance signals: Is = 0.25*Iload; 

Is = 0.5*Iload; Is =0.75* Iload; Is = Iload. 

4 – Plot time and frequency characteristics of the motor. 

5 – Estimate stability with Hurwitz, Mikhailov, Nyquist, and Bode criteria. 
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6 – Assess the steady-state errors.  

7. Assess the time domain specifications of the motor studied. 

 

Table 3.1.  Variants of initial data  

№ 

variant 

Motor 

type 

Prated,  

kW 

nr,  

rpm 

Iload,  

A 

RA+RAP, 

Ω 

J,  

kg·m
2
 

Ф, 

mWb 
2p 

1 P42 1.5 750 9.75 2.92 0.18 5.1 4 

2 P42 2.2 1000 13.3 1.75 0.18 5.2 4 

3 P42 4.5 1500 25.4 0.78 0.18 5.1 4 

4 P52 3.2 750 19.0 1.078 0.40 7.7 4 

5 P52 4.5 1000 25.2 0.632 0.40 7.9 4 

6 P52 8.0 1500 43.5 0.259 0.40 8.2 4 

7 P62 6.0 750 33.5 0.531 0.65 10.5 4 

8 P62 8.0 1000 43.0 0.328 0.65 10.7 4 

9 P62 14.0 1500 73.5 0.1275 0.65 11.1 4 

10 P71 7.0 750 42.0 0.546 1.4 9.2 4 

11 P71 10.0 1000 63.0 0.300 1.4 9.7 4 

12 P71 19.0 1500 103.0 0.1235 1.4 10.1 4 

 

Note. Plotting time and frequency characteristics in Matlab Command Window: 

K= (value of kM); 

a0=(product of values TA*TM); 

a1=(value of TM); 

a2=1; 

Time responses: 

q=tf([K],[a0 a1 1]) 

step(q),grid 

impulse(q),grid 

Frequency characteristics 

w=0:0.1:1000; 

p=j*w; 

q=K./(a0.*p.^2+a1.*p+a2) 

plot(real(q),imag(q));grid  

plot(w,imag(q));grid  

plot(w,real(q));grid  

plot(w,abs(q));grid  

bode([K],[a0 a1 a2]) 
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Appendix 

Transfer function of a multi-loop control system 

Transfer function of a single-loop control system with negative feedback is 

found with the following formula: 
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closed
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where Wforward(s) is the transfer function of the forward path (fig.3.4); 

Wforward(s) is the transfer function of the feedback. 

 

 

Figure 3.4a – Block diagram of a single-loop control system with negative feedback 

 

 

Transfer function of a single-loop control system with positive feedback is found 

with the following formula: 
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Figure 3.4b – Block diagram of a single-loop control system with positive feedback 
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Before calculating the transfer finction of a multi-loop control system, it is 

necessary to reduce it to a single-loop control system with application of block diagram 

reduction rules: 

 

Block diagram reduction rules 

Rule 1 − Check for the dynamic elements connected in local feedback loop and 

simplify. 

The transfer function of a local feedback connection is found with (3.27). 

Rule 2 − Check for the dynamic elements connected in parallel and simplify.  

The transfer function of a block parallel connection (fig.3.5) is found by summing 

the transfer functions of the dynamic elements connected in parallel: 





k

i
iparallel sWsW

1

)()( ,       (3.29) 

where k is number of dynamic elements connected in parallel. 

 

Figure 3.5 – Block diagram of parallel-connected blocks 

 

Rule 3 – Check for the blocks connected in series and simplify.  

The transfer function of a block series connection (fig.3.6) is found by multiply-

ing the transfer functions of the dynamic elements connected in series: 


m

i
iseries sWsW )()( ,       (3.30) 

where m is number of dynamic elements connected in series. 
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Figure 3.6 – Block diagram of series-connected blocks 

 

Rule 4 – Repeat the above steps until you get the simplified form with one 

(equivalent) block in the forward path. 

 

Example 1. 

 

Figure 3.7 – A multi-loop control system  
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Series connection: 
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The transfer function of the considered closed-loop control system: 
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The differential equation (written in Laplace transforms) that describes the 

control system behavior in the dynamic mode is 

)(06.0)()3.0036.11.11.0( 23 sXssYsss   

After opening the brackets 

)(06.0)(3.0)(036.1)(1.1)(1.0 23 sXssYsYssYssYs   

The differential equation that describes the control system behavior in the 

dynamic mode written in time domain is 

dt

dx
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2

2
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3
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The static equation that describes the control system behavior in the steady-state 

mode is obtained by eliminating all the derivatives from the differential equation: 

0)(3.0 ty  

Therefore, for any reference signal the output (which is the controlled 

parameter y(t)) of the control system considered in fig. 4 is equal to zero. 

 

Hurwitz stability criterion 

Hurwitz stability criterion is based on building special determinants of character-

istic polynomial (3.31) that are called Hurwitz determinants 

01
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2
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   (3.31).  

For control system to be stable, it is necessary and sufficient that all Hurwitz 

determinants 1, 2, …, n should be positive. 

Hurwitz main determinant is built according to the following rules 

1) elements of the main diagonal are coefficients of characteristic polynomial 

(3.31) with increasing index starting from a1 to an; 

2) the elements of the columns below the main diagonal are coefficients of (3.31) 

with successively descending indexes; the elements of the columns above the main di-

agonal are coefficients with successively increasing indexes; 

3) 0s are taken instead of coefficients of (3.31) with indexes less than 0 and high-

er than n.   

In accordance with these rules, Hurwitz main determinant of n-th order is the fol-

lowing 
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Hurwitz determinants of lower order are diagonal subdeterminants of n,  
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For example, for n = 3 

1 = a1; 
20

31

2
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 ;   

31

20
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0

aa

aa

aa

 . 

The last column of Hurwitz main determinant n containing only one non-zero 

element, an, we can write  

n = ann–1.      (3.33) 

Therefore, an being positive, it is sufficient to calculate (n-1) Hurwitz determi-

nants, 1, 2, …, n-1. If they are positive, the control system analyzed is stable. 

 

Example 2.  

Let us consider a second-order system, dynamic mode of which is described with 

o.d.e.  

)(4)(22.18.0
2

2

txyy
dt

dy

dt

yd
  

The characteristic polynomial is Q(s)=a0s
2
 + a1s + a2  or, numerically, 

Q(s) = 0.8s
2
 + 1.2s + 2. 

Hurwitz main determinant for the system is  

20

1

2

0

aa

a
 =

28.0

02.1
=(1.22)-(0.80)= 2.4 >0 

Stability condition: 1 =a1=0.8  > 0;   2 = a21 = a2a1 =1.22> 0. 

Thus, a second-order system is stable if all terms of its characteristic poly-

nomial are positive. 
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Example 3.  

Let us consider a third-order system, dynamic mode of which is described with 

o.d.e.  

)(4)(22.18.01.0
2

2

3

3

txyy
dt

dy

dt

yd

dt

yd
 , 

the characteristic polynomial of which is  
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Hurwitz main determinant is 
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and numerically  

28.00

02.11.0

028.0

3   

For the system to be stable, the subdeterminants must be positive 

1 = a1 > 0;  03021

20

31

2  aaaa
aa

aa
, 3 = a32 > 0. 

5.1)2.095.0(2)]21.0()2.18.0[(2
2.11.0

28.0
22 23   

 

All Hurwitz subdeterminants are positive so the third-order system of example 3 

is stable. 

The Mikhailov stability criterion formulation 

For a control system to be stable, it is necessary and sufficient that the Mi-

khailov plot should start on the real positive semi-axis at point [an,0] and succes-

sively cross n quadrants of the complex plane around the origin only counter-

clockwise never vanishing and go to infinity in the n-th quadrant, when frequency 

grows from 0 to infinity, n being the order of the characteristic polynomial of the sys-
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tem. 

 

Figure 3.8 – The Mikhailov plots for stable control systems of various order 

 

If the Mikhailov plot crosses zero (the origin of the complex plane), the system is 

on the stability margin. 

If the order of the quadrants that the Mikhailov plot crosses is not successive, the 

system is unstable. 

In Matlab, the Mikhailov plot is built like an ordinary frequency characteristic. In 

Matlab Command Window, the following commands should be written:  

w=0:0.1:1000; 

p=j*w; 

q=a0.*p.^n+a1.*p.^(n-1)+…+an; 

plot(real(q),imag(q));grid  

Example 1 Control system 1 is described with the differential equation 

)(4)(22.18.01.0
2

2

3

3

txyy
dt

dy

dt

yd

dt

yd
 . 

The characteristic polynomial of the system is 

Q(s) = 0.1s
3
 + 0.8s

2
 + 1.2s+2. 

The Mikhailov vector is obtained with s=j: 

D(j) = 0.1(j)
3
 + 0.8(j)

2
 + 1.2(j)+2 
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The order of the characteristic polynomial is 3 and an=2, so if the control system is 

stable, the Mikhailov plot must start at point [2, j0] at =0, go counter-clockwise round 

origin crossing quadrant 1 and quadrant 2 and go to infinity in quadrant 3 with  ap-

proaching 1000. 

In Matlab Command Window, we write: 

w=0:0.1:1000; 

p=j*w; 

q=0.1.*p.^3+0.8.*p.^2+1.2.*р+2; 

plot(real(q),imag(q));grid  

and obtain the Mikhailov plot in the frequency range from 0 through 1000 1/s. 

 

 

Figure 3.9 – The Mikhailov plot for control system 1 

 

In fig. 3.9, we can see that the Mikhailov plot goes to infinity in quadrant 3 as re-

quired for the system stability. However, the scale of the obtained graph is too big to re-

veal the plot behavior with respect to the origin 0+j0, that is why it is required to zoom up 

the domain of the origin.  
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Figure 3.10 –The Mikhailov plot behavior in the domain of the origin 

 

In the zoomed-up presentation of the domain of the origin (fig. 3.10), we can see 

that the Mikhailov plot starts at the positive real semi-axis at point [2, j0], goes across 

quadrant 1 counter-clockwise, crosses the positive imaginary semi-axis at point [0, j1.5] 

and enters quadrant 2, goes across quadrant 2 and enters quadrant 3 at point [-7,5;0].  

Therefore, the plot starts at the required point ([2;j0]), goes around the origin of the 

complex plane and successively crosses the quadrants going to infinity in the required 

quadrant (quadrant 3). It means that the considered control system is stable. 

Example 2. A control system is described with the differential equation 

)(4)(122.18.01.0
2

2

3

3

txyy
dt

dy

dt

yd

dt

yd
 . 

The characteristic polynomial of the system is 

Q(s) = 0.1s
3
 + 0.8s

2
 + 1.2s+12. 

The Mikhailov vector is obtained with s=j: 

D(j) = 0.1(j)
3
 + 0.8(j)

2
 + 1.2(j)+12 

Control system 2 is also a 3
rd

-order system, the order of the characteristic polyno-

mial is 3, an=12. The system is stable if the Mikhailov plot starts on the positive real 

semi-axis at point [12, j0] at =0 and envelops the origin crossing counter-clockwise 

quadrants 1 and 2 and going to infinity in quadrant 3 with  approaching 1000. 
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In Matlab Command Window, we write: 

w=0:0.1:1000; 

p=j*w; 

q=0.1.*p.^3+0.8.*p.^2+1.2.*р+12; 

plot(real(q),imag(q));grid  

 

and obtain the Mikhailov plot for system 2 in the frequency range of 0 - 1000 1/s. The 

zoomed-up presentation of the plot behavior with respect to the origin of the complex 

plane is given in fig. 3.11. 

 

Figure 3.11 – Behavior of the Mikhailov plot for system 2 in the vicinity of the origin 

 

As we can see from the figure, the Mikhailov plot starts at the positive real semi-

axis at point [12, j0] (as required), goes counter-clockwise across quadrant 1 (as required) 

but then crosses the positive Re semi-axis at point [2.2, j0] (instead of crossing the posi-

tive Im semi-axis) before enveloping zero and enters quadrant 4, goes across quadrant 4 

and cross the negative Im semi-axis at point [0;-1.2] to enter quadrant 3 and go to infinity 

with the frequency increase.  

Such configuration of the Mikhailov plot is typical of unstable control system. 

 



 20 

Unit step response h(t) as stability indicator 

Unit step signal 









0if,1

0if,0
)(1

t

t
t  so it is a bounded input. When it is applied to a 

stable control system, the system output must be bounded too.  

Aperiodic unit step response (fig. 3.12a) shows that the system is quite far from 

stability margin. Oscillatory unit step response (fig. 3.12b) indicates that the system 

approaches stability margin. The more oscillations in the transient curve, the closer the 

system to the stability margin.  

  

a b 

Figure 3.12 – Aperiodic (a) and oscillatory (b) unit step response of a stable control system 

 

Continuous oscillations of the output (fig.3.14) indicate that the system is 

marginally stable. 

 

Figure 3.13 – Continuous oscillations of a marginally stable control system output 
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If the unit-step response goes to infinity in aperiodic (fig.3.14a) or oscillatory 

(fig.3.14b) manner, the system is unstable.  

  

a b 

Figure 3.14 – Infinite aperiodic (a) and oscillatory (b) unit-step response  

of an unstable control system 

 

References to help 

1. Transfer Function Of Control System [Electronic resource. Access code: 

https://www.electrical4u.com/transfer-function/ ] 

2. Time Domain Analysis of Control System [Electronic resource. Access code: 

https://www.electrical4u.com/time-domain-analysis-of-control-system/ ] 

3. Time Domain Specifications [Electronic resource. Access code: 

https://www.tutorialspoint.com/control_systems/control_systems_time_domain_specifications.

htm ] 

4. Steady-State Error: What is is? [Electronic resource. Access code: 

https://www.electrical4u.com/steady-state-error-analysis/ 

5. Nyquist Stability Criterion  [Electronic resource. Access code: 

https://www.tutorialspoint.com/control_systems/control_systems_nyquist_plots.htm ] 

6. Steady State Errors  [Electronic resource. Access code:  

https://www.tutorialspoint.com/control_systems/control_systems_steady_state_errors.htm ] 
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