Laboratory work 2

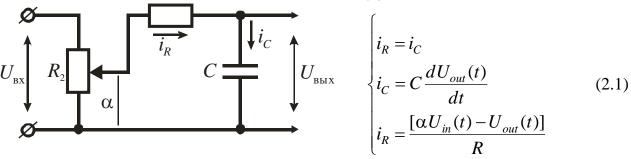
Studying of first- and second-order Typical Dynamic Elements parameters influence on their characteristics

2.1. Objective

Building of Simulink models of *RC* and *RLC* two-port circuits, obtaining their time and frequency characteristics for various *R* and *C* values, and studying influence of the circuit element parameter values on the transient behavior.

2.2 *RC* two-port circuit

Equations describing the circuit operation



$$U_{\rm in} \to x$$
$$U_{\rm out} \to y$$

Figure 2.1 – Electrical schematic of an *RC* two-port circuit

The structural algorithmic diagram represents the graphical presentation of differential equations written in operator form.

The operator form of differential equations (2.1) is:

$$\begin{cases} i_R(p) = i_C(p) & (1') \\ i_C(p) = CpU_{out}(p) & (2') \\ \vdots & (1) & (1) \\ \vdots & (1) & (1) \\ \vdots & (2) & (2) \end{cases}$$
(2.2)

$$|i_{R}(p) = \frac{1}{R} [\alpha U_{in}(p) - U_{out}(p)]$$
 (3')

Transfer function is defined as ratio of output $U_{out}(p)$ and input $U_{in}(p)$ signals in operational form:

$$W(p) = \frac{y(p)}{x(p)} = \frac{U_{out}(p)}{U_{in}(p)} = \frac{\sum_{l=0}^{m} b_l p^l}{\sum_{k=0}^{m} a_k p^k}$$
(2.3)

Let us obtain the expression linking these parameters by substituting equations (2') and (3') to equation (1'):

$$\frac{1}{R} [\alpha U_{in}(p) - U_{out}(p)] = Cp U_{out}(p)$$
(2.4)

The expression describing the output parameter is written on the left, while the expression describing the input parameter is on written on the right:

$$CpU_{out}(p) + \frac{1}{R}U_{out}(p) = \frac{1}{R}\alpha U_{in}(p),$$
 (2.5)

or:

$$[(C \cdot R)p + 1]U_{out}(p) = \alpha U_{in}(p).$$
(2.6)

Consequently, the transfer function of the RC circuit considered is

$$W(p) = \frac{U_{out}(p)}{U_{in}(p)} = \frac{\alpha}{(R \cdot C)p + 1}$$
(2.7)

The transfer function obtained shows that the considered RC two-port circuit is a firstorder aperiodic dynamic element. Action of R and C values on its dynamic mode can be studied via Simulink model shown in Fig. 2.2.

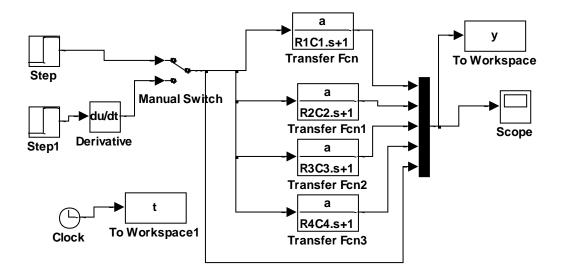


Figure 2.2 – Simulink model for studying dynamic behavior of *RC* two-port circuit versus resistance and capacitance values

2.3 RLC two-port circuit

Equations describing the circuit operation

$$U_{BX} \xrightarrow{R} L$$

$$U_{C} \xrightarrow{U_{in} \to x}$$

$$U_{C} \to y$$

$$U_{in} \to x$$

$$U_{C} \to y$$

$$U_{in} \to x$$

$$U_{C} \to y$$

$$U_{in} \to x$$

$$U_{C} \to y$$

$$U_{in} = U_{R} + U_{L} + U_{C} = U_{in} + L \cdot \frac{di}{dt} + \frac{1}{C} \int i \cdot dt$$

$$(2.8)$$

Figure 2.3 - Electrical schematic of an *RCL*

two-port circuit

To obtain the expression containing only input voltage $U_{in}(t)$ and output voltage $U_C(t)$, let us write equations (2.8) in the operator form and make required transformations:

$$\begin{bmatrix} U_R(p) = R \cdot i(p) & (1') \end{bmatrix}$$

$$U_C(p) = \frac{1}{Cp}i(p) \tag{2'}$$

$$\begin{cases} U_{L}(p) = Lpi(p) & (3') \\ U_{in}(p) = U_{R}(p) + U_{L}(p) + U_{C}(p) = \\ = Ri(p) + Lpi(p) + \frac{1}{Cp}i(p) & (4') \end{cases}$$
(2.9)

From equation (2'), current i(p) can be expressed with $U_C(p)$:

$$i(p) = CpU_C(p). \tag{2.10}$$

Substituting (2.10) to equations (1'), (3') and (4'), we obtain

$$U_{in}(p) = (R \cdot C)pU_{C}(p) + (L \cdot C)p^{2}U_{C}(p) + U_{C}(p) =$$

$$= [(L \cdot C)p^{2} + (R \cdot C)p + 1]U_{C}(p)$$
(2.11)

The transfer function is ratio of output voltage $U_C(p)$ and input voltage $U_{in}(p)$ in operational form:

$$W(p) = \frac{U_C(p)}{U_{in}(p)} = \frac{1}{(L \cdot C)p^2 + (R \cdot C)p + 1}$$
(2.12)

The transfer function obtained shows that the considered *RLC* two-port circuit is a second-order dynamic element. Its transient mode behavior (either aperiodic or oscillatory) defining the type of the dynamic link depends on the parameters of the circuit elements.

Action of *R*, *L*, and *C* values on the circuit dynamic mode can be studied via Simulink model shown in Fig. 2.4.

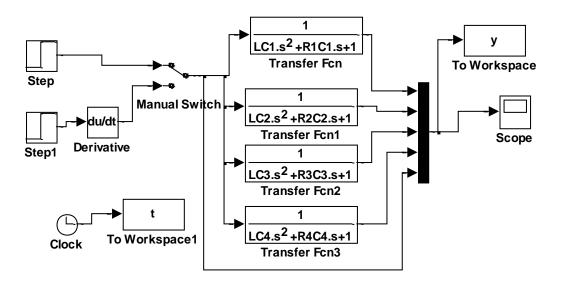


Figure 2.4 – Simulink model for studying dynamic behavior of *RLC* two-port circuit versus resistance, inductance and capacitance values

2.4 Assignment

Build Simulink models of *RC* and *RLC* circuits, obtain their time and frequency characteristics for different values of the circuit element parameters. Obtain their dynamic equations, transfer functions, and complex gains. Analyze dynamic behavior of the considered two-port *RC* and *RLC* circuits versus the circuit element parameter values specified in table 2.1 according to the variant.

вариант	α	<i>L</i> , H	$R1, \Omega$	<i>R</i> 2, Ω	<i>R</i> 3, Ω	<i>R</i> 4, Ω	<i>C</i> 1,F	<i>C</i> 2,F	<i>C</i> 3,F	<i>C</i> 4,F
1	0.8	0.28	720	480	180	180	8.20.10-5	$8.20 \cdot 10^{-6}$	0.00047	$8.20 \cdot 10^{-6}$
2	0.2	0.12	750	510	340	121	$4.70 \cdot 10^{-5}$	$4.70 \cdot 10^{-6}$	$4.20 \cdot 10^{-6}$	8.20.10-6
3	0.15	0.32	750	630	340	200	$1.20 \cdot 10^{-6}$	$1.20 \cdot 10^{-5}$	$4.70 \cdot 10^{-6}$	8.20.10-6
4	0.4	0.32	750	330	510	130	$1.20 \cdot 10^{-6}$	$1.20 \cdot 10^{-5}$	$4.70 \cdot 10^{-6}$	8.20.10-6
5	0.85	0.45	750	750	620	130	$4.20 \cdot 10^{-5}$	$8.20 \cdot 10^{-6}$	$4.70 \cdot 10^{-6}$	$6.20 \cdot 10^{-6}$
6	0.5	0.24	470	390	430	130	$4.20 \cdot 10^{-5}$	$1.20 \cdot 10^{-5}$	$4.70 \cdot 10^{-6}$	8.20.10-6
7	0.25	0.34	330	820	510	1580	$2.20 \cdot 10^{-6}$	$1.20 \cdot 10^{-5}$	$4.70 \cdot 10^{-6}$	8.20.10-6
8	0.1	0.12	330	470	100	300	$2.20 \cdot 10^{-6}$	$1.20 \cdot 10^{-5}$	$4.70 \cdot 10^{-5}$	$4.70 \cdot 10^{-5}$
9	0.9	0.85	510	470	430	820	8.20·10 ⁻⁵	3.30·10 ⁻⁵	$1.80 \cdot 10^{-5}$	$4.70 \cdot 10^{-5}$
10	0.75	0.55	470	470	360	680	$4.20 \cdot 10^{-5}$	3.30·10 ⁻⁶	$1.80 \cdot 10^{-5}$	$4.70 \cdot 10^{-5}$

Table 2.1Variants of the two-port circuit element parameter values

Appendix Plotting frequency characteristics for second-order TDE in Matlab

Dynamic equation of a second-order TDE is

$$T^{2} \frac{d^{2} y(t)}{dt^{2}} + 2\xi T \frac{dy(t)}{dt} = kx(t)$$
(2.13)

and the transfer function is

$$W(s) = \frac{k}{T^2 s^2 + 2\xi T s + 1},$$
(2.14)

where *k* is transfer coefficient; *T* is time constant; ξ is damping factor.

Value of damping factor ξ specifies the transient behavior of the TDE (fig. 2.5):

 $\xi \ge 1$ is characteristic of aperiodic transient;

 $\xi < 1$ is characteristic of oscillatory transient.

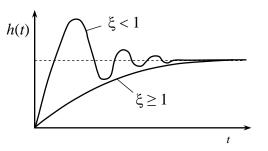


Figure 2.5 – Transient characteristics of 2^{nd} –order TDE versus damping factor ξ

Unit step response (Heaviside response) is $h(t) = k[1 - Ae^{-\alpha t} \sin(\omega t + \varphi)],$ where A and φ are integration constants determined under zero initial conditions, $A = 1/\sqrt{1-\xi^2}; \quad \varphi = \arcsin\sqrt{1-\xi^2};$ Unit impulse response () is w(t) = h'(t).

Time constant *T* and damping factor ξ can be found from frequency characteristics. Frequency characteristics are found using complex transfer function *W*(*j* ω)

$$W(j\omega) = W(s)|_{s=j\omega} = \frac{k}{T^2(j\omega)^2 + 2\xi T(j\omega) + 1}$$
 (2.15)

or

$$W(j\omega) = W(s)\Big|_{s=j\omega} = \frac{k(1-T^2\omega^2)}{(1-T^2\omega^2)^2 + 4\xi^2 T^2\omega^2} - j\frac{2k\xi T\omega}{(1-T^2\omega^2)^2 + 4\xi^2 T^2\omega^2}$$
(2.16)

Second-order TDE (aperiodic transient)

The initial parameters of the 2^{nd} -order TDE are given in table 2.2.

k	<i>L</i> , H	R, Ω	<i>C</i> ,F			
0.8	0.28	720	$8.20 \cdot 10^{-5}$			

Table 2.2 – Parameters of *RLC*-circuit (see fig. 2.3)

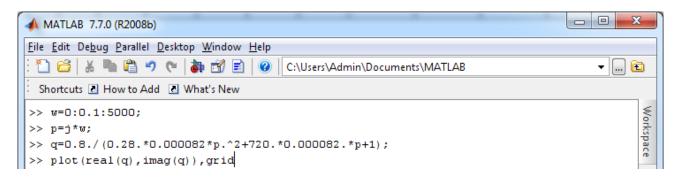
Transfer function of this dynamic element after substituting values of the RLC-circuit parameters to (2.12)

$$W(p) = W(s)\Big|_{s=p} = \frac{0.8}{0.28 \cdot 8.2 \cdot 10^{4} (-5) p^{2} + 720 \cdot 8.2 \cdot 10^{4} (-5) p + 1}$$

According to (2.14), time constant T is equal to square root of the coefficient at p^2 , that is $T = (0.28 \times 8.2 \times 10^{-5})^{0.5} = 0.0048$.

Damping factor ξ is equal to the coefficient at p divided by double time constant, that is $\xi = (720 \times 8.2 \times 10^{-5})/(2 \times 0.0048) = 6.15$, which is >1, therefore the *RLC*-circuit with the considered parameters behaves as a 2nd-order aperiodic TDE.

To plot frequency characteristics, the expression for the transfer function W(p) must be written in **Command window** and converted to complex transfer function $W(i\omega)$. For this, the following commands are introduced:



Matlab command **plot**(**real**(**q**),**imag**(**q**)),**grid** allows plotting amplitude-phase frequency characteristic:

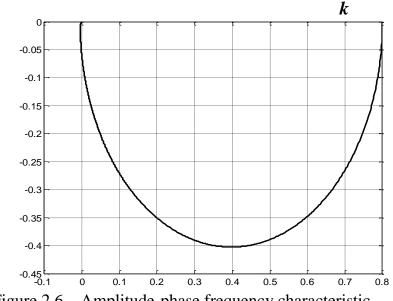


Figure 2.6 – Amplitude-phase frequency characteristic

Amplitude-phase frequency characteristic is the hodograph of the complex transfer function $W(j\omega)$.

The $W(j\omega)$ hodograph of a 2nd-order TDE starts at point [k,0)] at $\omega = 0$, which allows determining the transfer coefficient *k* in case the characteristic is obtained experimentally and the parameter is not known.

For the TDE studied, k is 0.8 and the characteristic starts at point [0.8,0].

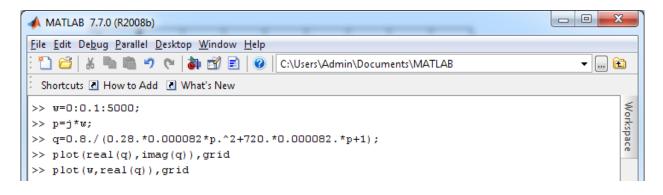
The hodograph (or amplitude-phase frequency characteristic) crosses *Im*-axis at point $[0, -k/(2\xi)]$. Hence it is also possible to determine damping factor ξ from the amplitude-phase frequency characteristic

For the TDE studied, $-0.8/(2\xi) = -0.065$, therefore $\xi = 0.8/(2*0.065) = 6.15$, which exactly coincides with the computed value.



Figure 2.7 - Crosspoint of the amplitude-phase frequency characteristic and Im-axis

Matlab command plot(w,real(q)),grid allows plotting real frequency characteristic $Re(\omega)$.



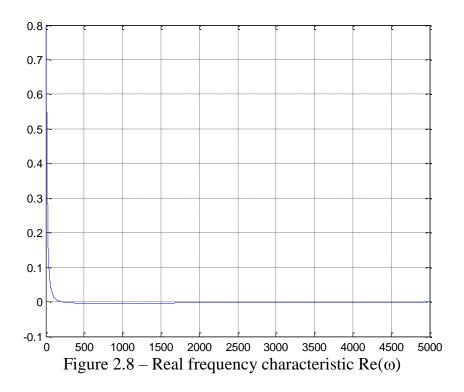
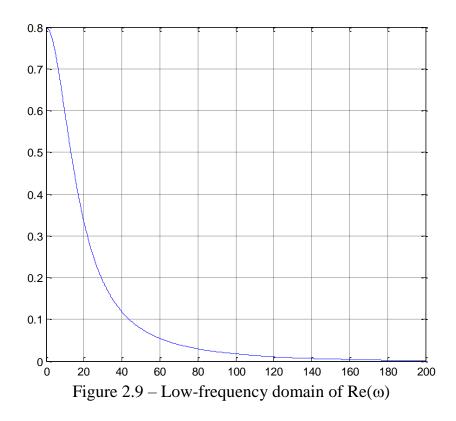


Figure 2.9 shows the low-frequency domain of $\text{Re}(\omega)$. The real frequency characteristic of a 2nd-order TDE starts at *k* at $\omega = 0$, which makes it possible to determine the transfer coefficient of a 2nd-order TDE in case the parameter is unknown.

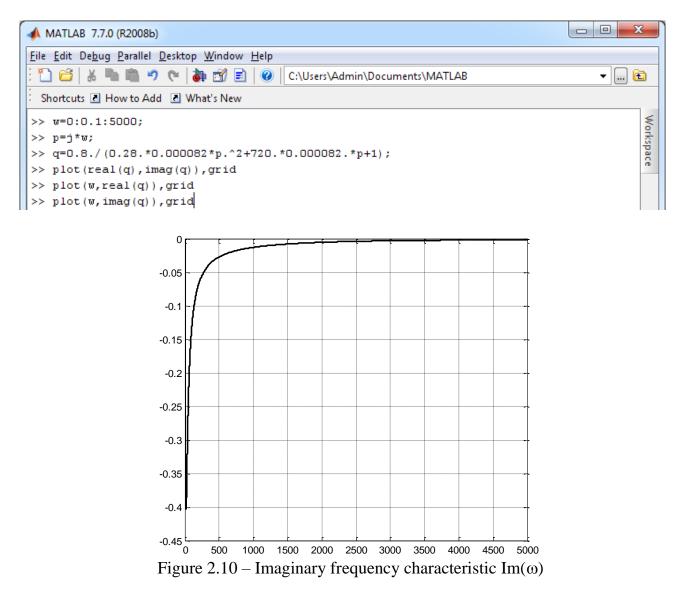
For the TDE studied the transfer coefficient, k = 0.8 and Re(ω) starts at 0.8.

At frequency $\omega = 1/T$, the real frequency characteristic of a 2nd-order TDE crosses ω -axis and, hence, the point of Re(ω) = 0 allows determining time constant *T*.

For the TDE studied, $\text{Re}(\omega) = 0$ at frequency $\omega \approx 200 \text{ s}^{-1}$. Consequently, T = 1/200 = 0.005, which is in good agreement with the computed value 0.0048.



Matlab command **plot(w,imag(q)),grid** allows plotting imaginary frequency characteristic $Im(\omega)$.



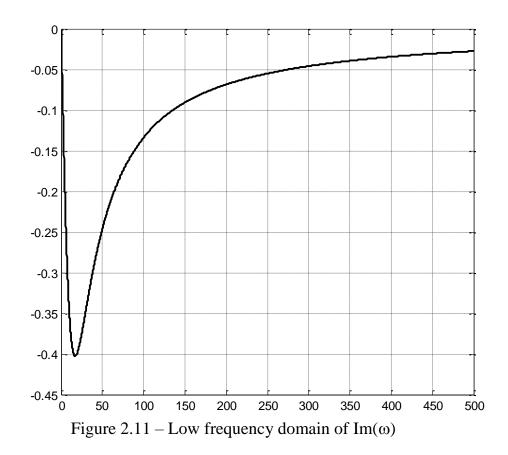
The characteristic helps determine time constant *T* (if the damping factor ξ is known) or damping factor ξ (if the time constant is known) of a 2nd-order TDE.

At frequency $\omega = 1/T$, Im(ω) reaches the level of $-k/(2\xi)$.

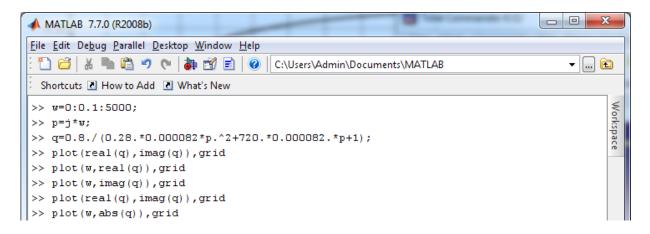
Figure 2.11 presents the low-frequency domain to show minimum of Im(ω) and level of $-k/(2\xi)$.

For given ξ , according to the graph, at the level of -0.8/(2*6.15) = -0.065, frequency is approximately 220 s⁻¹, therefore T = 1/220 = 0.0045, which is quite close to the computed value of 0.0048.

For given *T*, at frequency $\omega = 1/0.0048 = 208 \text{ s}^{-1}$, $-0.8/(2*\xi) \approx -0.067$ according to the graph. Therefore, $\xi = 0.8/(2*0.067) = 5.97$ (≈ 6), which is in acceptable agreement with the computed value of 6.15 (≈ 6).



Matlab command **plot(w,abs(q)),grid** allows plotting magnitude frequency characteristic $A(\omega)$.



Magnitude frequency characteristic $A(\omega)$ helps determine transfer coefficient *k* and time constant *T* in case the characteristic is obtained experimentally and the parameters of the equipment that is modelled as a 2nd-order TDE is unknown.

A(ω) starts at *k*, that is at $\omega = 0$, A(0) = *k*, which makes it possible to specify the transfer coefficient.

At $\omega = 1/T$, the curve declines to the level of $k/(2\xi)$ so time constant T can be found.

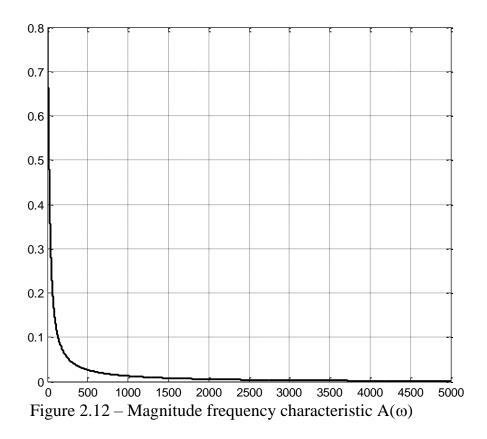
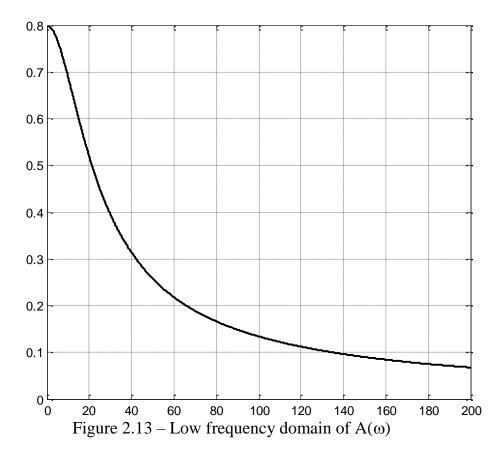


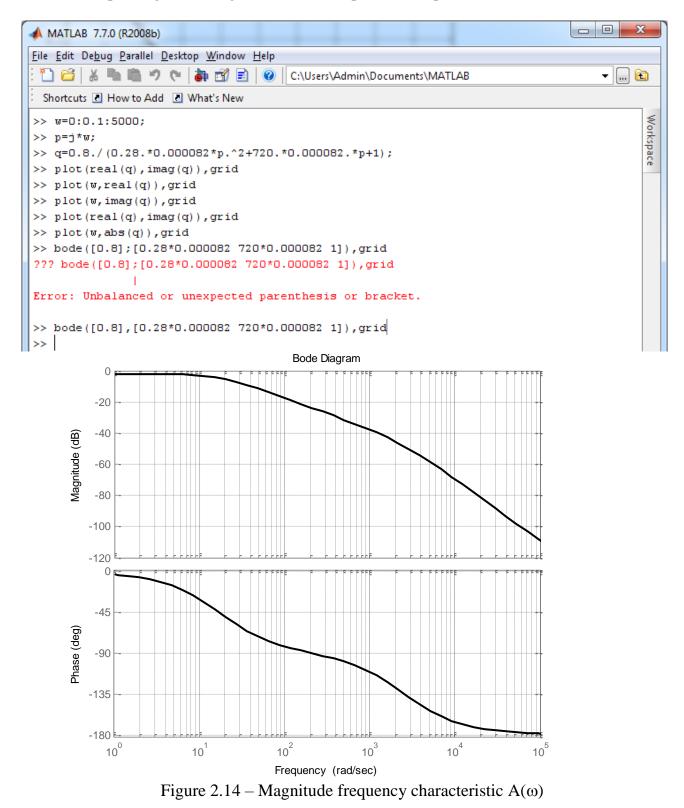
Figure 2.13 presents the low-frequency domain of $A(\omega)$.



For the TDE studied, at $\omega = 0 A(0) = 0.8$.

At the level of $0.8/(2 \cdot 6.15) = 0.065$, $\omega \approx 200 \text{ s}^{-1}$. Consequently, T = 1/200 = 0.005, which is quite close to the computed value 0.0048.

Matlab command **bode**([$\mathbf{b}_0 \ \mathbf{b}_1 \ \dots \ \mathbf{b}_m$],[$\mathbf{a}_0 \ \mathbf{a}_1 \ \dots \ \mathbf{a}_m$]),grid (where $\mathbf{b}_0 \ \mathbf{b}_1 \ \dots \ \mathbf{b}_m$ and $\mathbf{a}_0 \ \mathbf{a}_1 \ \dots \ \mathbf{a}_m$ are, correspondingly, coefficients of the numerator and denominator of the transfer function) allows plotting Bode magnitude $L(\omega)$ and phase $\varphi(\omega)$ plots.



The Bode magnitude plot demonstrates two slope breaks and the Bode phase plot has two waves, which is characteristic of a 2^{nd} –order dynamic element with aperiodic transient and quite a high damping factor, which is the case considered.

The first break frequency ω_{b1} of L(ω) coincides with frequency ω_{-45} of $\phi(\omega)$ crossing the level of -45°.

The other break frequency ω_{b2} of L(ω) coincides with frequency ω_{-135} of $\phi(\omega)$ crossing the level of -135.

A 2nd-order aperiodic TDE (A-II TDE) is a complex dynamic element comprising two 1st-order aperiodic TDEs (A-I TDEs) connected in series, so the transfer function of A-II TDE (2.14) is product of transfer functions of the two A-I TDEs:

$$W(s)_{\rm A-II} = W(s)_{\rm 1A-I} \cdot W(s)_{\rm 2A-I} = \frac{1}{T_1 s + 1} \cdot \frac{k}{T_2 s + 1},$$
(2.17a)

or

$$W(s)_{A-II} = \frac{k}{T^2 s^2 + 2\xi T s + 1} = \frac{1}{T_1 s + 1} \cdot \frac{k}{T_2 s + 1} = \frac{k}{(T_1 \cdot T_2) s^2 + (T_1 + T_2) s + 1}, \quad (2.17b)$$

where T_1 is time coefficient of one 1st-order TDE and T_2 is time constant of the other 1st-order TDE.

From (2.17), T_1 and T_2 related to time constant *T* and damping factor ξ of the 2nd-order TDE:

 $T_1 \cdot T_2 = T$ and $T_1 + T_2 = 2\xi T$ T_1 and T_2 can be found from Bode plots as $T_1 = 1/\omega_{b1}$ and $T_2 = 1/\omega_{b2}$. For the A-II TDE studied $\omega_{b1} = \omega_{-45} \approx 18$, so $T_1 = 1/18 = 0.0556$ $\omega_{b2} = \omega_{-135} \approx 2400$, so $T_2 = 1/2400 = 0.000417$

 $T_1 * T_2 = 0.0556 * 0.000417 = 0,00002318$ In the 2nd-order TDE studied, $T^2 = L * C = (0.28 * 8.2 * 10^{-5}) = 0.00002296$

 $T_1 + T_2 = 0.0556 + 0.000417 = 0.056017$ In the 2nd-order TDE studied, $2\xi T = R^*C = (720^*8.2^*10^{-5}) = 0.05904$

As we can see, results of the calculation and the simulation are in good agreement, which verifies the correctness of the characteristics plotted.

Second-order TDE (oscillatory transient)

The initial parameters of the 2^{nd} -order TDE are given in table 2.3.

k	<i>L</i> , H	$R1, \Omega$	<i>C</i> 1,F				
0.8	0.28	180	8.20.10 ⁻⁶				

Transfer function of this dynamic element after substituting values of the *RCL*-circuit parameters to (2.12) is

$$W(p) = W(s)\Big|_{s=p} = \frac{0.8}{0.28 \cdot 8.2 \cdot 10^{4} (-6) p^{2} + 180 \cdot 8.2 \cdot 10^{4} (-6) p + 1}$$

0 0

Time constant *T* is equal to square root of the coefficient at p^2 , that is $T=(0.28*8.2*10^{-6})^{0.5}=0.0015$.

Damping factor ξ is equal to the coefficient at *p* divided by double time constant, that is $\xi = (180*8.2*10^{-6})/(2*0.0015)=0.492$, which is <1, therefore the *RLC*-circuit with the considered parameters behaves as a 2nd-order oscillatory TDE.

To plot frequency characteristics, the above-described **Matlab** commands are gradually applied to the considered TDE.

```
>> w=0:0.1:5000;
>> p=j*w;
>> q=0.8./(0.28.*0.0000082*p.^2+180.*0.0000082.*p+1);
>> plot(real(q),imag(q)),grid
>> plot(w,real(q)),grid
>> plot(w,imag(q)),grid
>> plot(w,abs(q)),grid
>> bode([0.8],[0.28*0.0000082 180*0.0000082 1]),grid
```

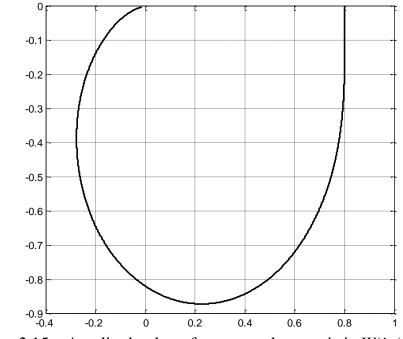


Figure 2.15 – Amplitude-phase frequency characteristic $W(j\omega)$

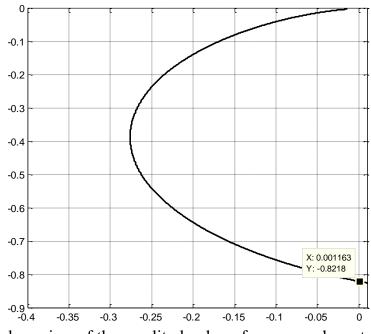
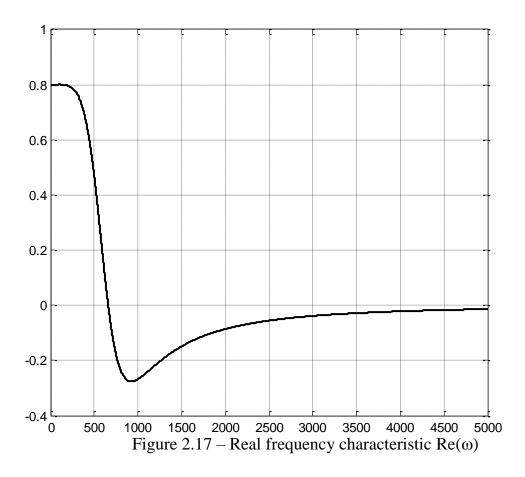
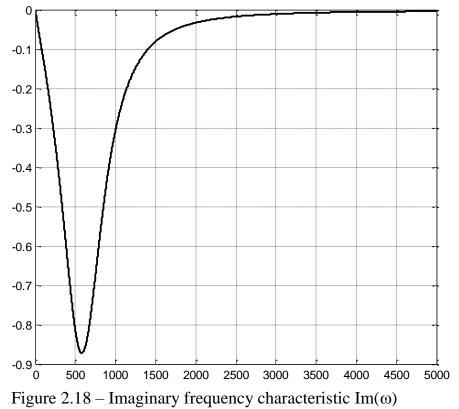


Figure 2.16 – Zoomed-up view of the amplitude-phase frequency characteristic crossing with *Im*-axis

-0.8/(2 ξ)=-0.822, therefore damping factor ξ =0.8/(2*0.822)=0.49, which is equal to the computed value.

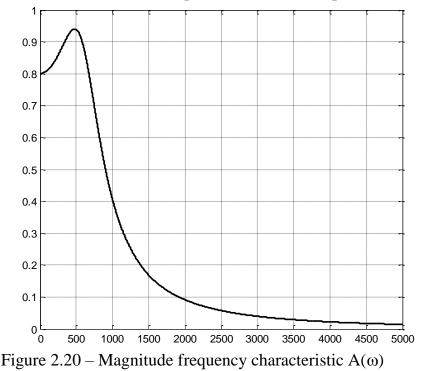


At frequency $\omega = 1/T$, Re(ω) =0. The characteristic crosses ω -axis at frequency $\omega \approx 600 \text{ s}^{-1}$. Consequently, T=1/600=0.00167, which is close to the computed value 0.0015.



At frequency $\omega = 1/T$, Im(ω) crosses the level of $-k/(2\xi)$.

According to the graph, at the level of -0.8/(2*0.49)=-0.816, frequency is approximately 510 s⁻¹, therefore T=1/510=0.00196, which is quite close to the computed value of 0.0015.



The characteristic demonstrates a resonance, which is typical of a 2nd-order oscillatory DE (or a control system of the kind) with damping factor $\xi < 0.7$. In the considered case, ξ =0.492. At the resonance frequency $\omega_{\rm res} = \frac{\sqrt{1-2\xi^2}}{T}$, A(ω) reaches maximum of $A(\omega_{\rm res}) = \frac{k}{2\xi\sqrt{1-\xi^2}} \; .$ 0.9 0.8 0.7 0.6 0.5 0.4 ^L-0

100

200

300

400

500

Figure 2.21 – Zoomed-up view of the $A(\omega)$ resonance

600

700

800

1000

900

For the TDE studied,
$$\omega_{\text{res}} = \frac{\sqrt{1 - 2 \cdot 0.49^2}}{0.0015} = 480 \text{ s}^{-1}$$
 and

 $A(\omega_{\rm res}) = \frac{0.8}{2 \cdot 0.49 \sqrt{1 - 0.49^2}} = 0.936$. The results obtained by calculation completely coincide with the abarrateristic plotted

with the characteristic plotted.

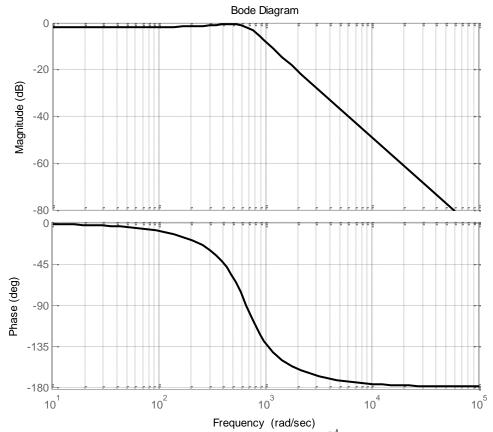


Figure 2.22 – Bode magnitude and phase plots for the 2nd-order oscollatory TDE studied

Bode magnitude plot also shows resonance at the frequency $\omega_{res} \approx 500 \text{ s}^{-1}$. The slope of the curve breaks only once from 0 dB/decade to -40 dB/decade, which is characteristic of a 2^{nd} -order oscillatory TDE.

The break frequency $\omega_b \approx 630 \text{ s}^{-1}$ coincides with ω_{-90} which is the frequency of Bode phase plot crossing "-90" level, $\omega_b = \omega_{-90} \approx 630 \text{ s}^{-1}$.

Break frequency is opposite to time constant T, $\omega_b = 1/T$, therefore $T = 1/\omega_b$, and for the TDE studied T = 1/630=0.00159 against 0.0015 computed, which verifies the correctness of the characteristics plotted.